IN-VITRO ANTIBACTERIAL AND ANTIOXIDANT POTENTIAL OF LEAF AND FLOWER EXTRACTS OF VERNONIA CINEREA AND THEIR PHYTOCHEMICAL CONSTITUENTS

Syed Mohd. Danish Rizvi¹, Deboshree Biswas¹, Jamal M. Arif² and Mohd. Zeeshan*¹
¹Department of Biotechnology and Microbiology, Integral University, Lucknow-226 026, India.
²Department of Biochemistry, University of Hail, P.O. Box 2440, Hail, KSA.
*Corresponding author’s E-mail: zee_bot.auind@rediffmail.com

Accepted on: 06-05-2011; Finalized on: 01-08-2011.

ABSTRACT

In the present study preliminary phytochemical analysis of methanol extract of leaf and flower indicated the presence of alkaloids, phenols, tannin, saponins and flavonoids. The antibacterial activity of different extracts (hexane, petroleum ether, chloroform and methanol) of leaf and flower of Vernonia cinerea were tested separately against both gram positive (Staphylococcus aureus and Bacillus cereus) and gram negative (Enterobacter aerogenes) bacteria using the agar well diffusion method. Extracts of both the parts (leaf and flower) exhibited differential effects on the test bacteria. Maximum antibacterial activity (14 mm) was noticed with the methanolic extract of leaf followed by hexane extract (13 mm) of flower against S. aureus and B. cereus, respectively. The antibacterial potential of the methanol extract of leaf against the test bacteria determined by minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) indicated the higher susceptibility of the B. cereus and S. aureus as compared to the E. aerogenes. Maximum antioxidant potential using DPPH radical scavenging capacity was noticed in methanol leaf extract. From the study it can be concluded that the antibacterial and antioxidant activities exhibited by Vernonia cinerea is of great interest and may lead to the discovery of new pharmacologically important compounds.

Keywords: Antibacterial, Antioxidant, Asteraceae, Phytochemicals, Vernonia cinerea.

INTRODUCTION

Resistance of microorganisms to antibiotics has become a global issue.¹ Emergence of new multidrug-resistant microorganisms has reduced the efficacy of many well known antibiotics.² There is an urgent need to discover new antimicrobial compounds with novel mechanisms of action and diverse chemical structures for new and re-emerging infectious diseases.³ Therefore, researchers are looking for new compounds to develop better antimicrobial drugs and focused their attention towards various natural sources like fungi, algae, and higher plants.⁴ Among them, higher plants play an important role by producing large number of secondary metabolites which can act as chemotherapeutic, bactericidal, and bacteriostatic agents.⁵ Plant based antimicrobials have been proved to be effective in the treatment of infectious diseases simultaneously with lesser side effects, which are often associated with synthetic antibiotics.⁶

The Asteraceae family is well distributed in Indian flora, by its floral structure and chemical composition; it is considered one of the most advanced family from all the Dicotyledonous.⁷ A large number of plants belonging to the Asteraceae family contained chemical compounds exhibiting antimicrobial and antioxidant properties. Various studies have been carried out on some of Asteraceae plants, e.g. Achillea sp., Ageratum sp., and Vernonia sp.⁸ The different parts of Tridax procumbens were also evaluated for antibacterial and antifungal activity against E. coli, S. aureus, P. mirabilis and C. albicans.⁹ Canndan et al.¹⁰ has reported the antimicrobial and antioxidant potential of Achillea species of family Asteraceae. Traditionally, Ageratum sp. is used as antidysenteric⁹ and in the treatment of leprosy and purulent opthalmia.¹² Roots and leaves of Vernonia sp. are used in phyto-medicine to treat fever, hiccups, kidney disease and stomach discomfort.¹⁰ Furthermore, literature survey revealed that little attention has been given to antibacterial and antioxidant potential of different extracts of aerial parts of the Vernonia sp.

Gram positive bacteria (Bacillus cereus and Staphylococcus aureus) and gram negative bacteria (Enterobacter aerogenes) were used as a test bacteria as it has been shown to be major causal organisms of various human infections such as food poisoning, nosocomial infections, wound infections and urinary tract infections. Therefore, the aim of this study was to analyze the phytochemical constituents, antibacterial and antioxidant properties of leaf and flower of Vernonia cinerea.

MATERIALS AND METHODS

Plant material

The leaves and flowers of Vernonia cinerea were collected locally from kukrail forest, lucknow, India on 29th December 2009. The authenticity of the plant was confirmed by Dr. Tariq Husain, Scientist, NBRI and voucher specimens are maintained at the NBRI herbarium.

Preparation of plant extracts

The dust free leaves and flowers of Vernonia cinerea were shade dried for five days. The plant material were finely ground and 25 g of dried powder from each part were then extracted sequentially by using soxhlet extractor...
with 250 ml of hexane, petroleum ether, chloroform and methanol separately in order to extract non-polar and polar compounds. The crude extracts were then filtered through Whatman No. 1 filter paper and concentrated in vacuum at 40°C using a rotary evaporator. The concentrated extracts were subsequently dried aseptically with the help of drier.

Phytochemical analysis

Phytochemical analysis for major secondary metabolites from leaves and flower of Vernonia cinerea were undertaken using standard qualitative and quantitative methods as described by various authors. The leaves and flower were screened for the presence of compounds like alkaloids, tannins, saponins, flavonoids and Phenols.

Microorganisms and Growth conditions

Bacillus cereus, Enterobacter aerogenes and Staphylococcus aureus were used as test bacteria in the present study. The bacterial strains were procured from NCL Pune and revived in Nutrient Broth. For antibacterial testing fresh inoculum was prepared for each bacterium and incubated at 37±2°C for 24 h. The cells suspension was adjusted with nutrient broth to obtain turbidity comparable to that of McFarland 0.5 standard (1.5×10⁸ CFU/ml).

Antibiotic sensitivity testing

For antibiotic sensitivity testing of bacterial strains against two antibiotics such as Amoxicillin and Erythromycin having potency of 10 µg per disc was determined by the standard disc diffusion method of Bauer et al.

Determination of antibacterial susceptibility

(a) Agar well diffusion method

The antibacterial assay of the extracts of leaves and flower of Vernonia cinerea were carried out by using agar well diffusion method. 100 µl of diluted inoculum (1.5 ×10⁸ CFU/ml) of test bacteria was swabbed over plates containing sterile Mueller Hinton agar (pH 7.2). Forty microlitre (40 µl) of the extract from various concentration prepared in DMSO (50 mg extract/ml of DMSO) was poured into the well of 4 mm diameter of agar plate. DMSO without extract was used as a control. (b) Micro dilution method

Minimum inhibitory concentration (MIC) was determined by using micro broth-dilution bioassay of only selected extracts having potential antibacterial activity. Crude plant extracts were dissolved in DMSO to make stock solution of 100 mg/ml. 100 µl of each extract stock solution were two fold serially diluted with sterile nutrient broth in a 96-wells of microtiter plates for each bacteria. Thereafter, 100 µl inoculum (1.5 ×10⁸ CFU / ml bacterial suspension) was added to each well. The microtiter plates were incubated at 37±2°C for 24 h. Fifty microlitre (50 µl) of 2 mg/ml p-iodo-nitrotetrazoleum chloride (INT) to each well was added and incubated at 37°C for 30 minutes. The reddish-pink colour indicates growth of bacteria in the microtiter plate and clear wells indicates the inhibition by extract. The MIC values were taken as the lowest concentration of extract in the well that showed no color. The minimum bactericidal concentration (MBC) was determined by subculturing 50 µl from each well showing no apparent colour and the least concentration of extract showing no visible growth on agar plate was taken as MBC.

Determination of free radical scavenging activity

The DPPH radical scavenging capacity of methanol extracts of leaf and flower was determined following the method of Williams et al modified by Miliauskas et al. DPPH radicals have strong absorption maximum at 515 nm which decreases due to the reduction by antioxidants. The DPPH solution in methanol (6 × 10⁻³ M) was prepared freshly, and 3 mL of this solution was mixed with 100 µl of methanolic extracts. The samples were incubated for 20 min at 37 °C in a water bath, and then the decrease in absorbance at 515 nm was measured (AE). A blank sample containing 100 µl of methanol in the DPPH solution was prepared, and its absorbance was measured (AB). The experiment was carried out in triplicate. Radical scavenging activity was calculated using the following formula:

\[
\% \text{ inhibition} = \left(\frac{\text{AB} - \text{AE}}{\text{AB}} \right) \times 100
\]

where AB = absorbance of the blank sample, and AE = absorbance of the methanol extract.

Statistical analysis

All data are mean ± S.E. of three replicates. Statistical analysis was performed using spss version 10.

RESULTS AND DISCUSSION

Secondary metabolites in various plants and microorganisms are generally evolved in self defense to avert the toxicity due to adverse environmental/physiological conditions. Subsequently these intermediary metabolites also provided a natural platform for development of numerous drug leads for treatment of various diseases. The present study revealed the presence of tannin, alkaloids, phenols and flavonoids in the methanol extracts of leaf and flower of Vernonia cinerea (Table 1).

The leaf extract showed abundant occurrence of flavonoids while in flower extracts flavonoids and saponins were predominant. The distribution and localization of these metabolites varies with the parts of the plant used which may be responsible for the differences in the antimicrobial activity. Figures 1a, b and c showed the effect of various concentrations (0.25, 0.5, 1 and 2 mg / well) of hexane extracts of leaf and flower on B. cereus, E. aerogenes and S. aureus. Extraction procedure from hexane is an important part in the isolation process of bioactive compounds since non polar compounds were extracted rapidly in hexane. Maximum zones of inhibition of 13
mm, 11 mm and 9 mm were noticed with hexane extract of flower (2 mg /well) against B. cereus, E. aerogenes and S. aureus, respectively. However, hexane leaf extract at the same concentration caused inhibition zone of only 6 mm and 7 mm against B. cereus and E. aerogenes, respectively. The hexane extract of leaf did not show any activity against S. aureus at any concentrations. Mann et al. investigated the potent antimicrobial activity of hexane extracts of Bombax buonopozense (Bombacaceae) flower against Staphylococcus aureus, Escherichia coli and Aspergillus niger.

Further, the ether extracts of leaf and flower showed antibacterial activity against B. cereus, E. aerogenes and S. aureus (Figure 2a, b and c). Both leaf and flower extracts of Vernonia cinerea at high concentration of the crude extracts (2 mg/well) showed similar effects as observed by inhibitory zone (8 mm) against B. cereus. Whereas, E. aerogenes and S. aureus showed differential sensitivity as 10 and 11 mm zones of inhibition were recorded with leaf extracts, respectively. However, flower extracts exhibited similar zone of inhibition (9 mm) against both E. aerogenes and S. aureus. Pratima and Sundar reported high activity of the petroleum ether leaf extract of Digera muricata L. against Vibrio cholerae.

The antibacterial activities of Chloroform extracts of leaf and flower against B. cereus, E. aerogenes and S. aureus are shown in figures 3 a, b and c. Zone diameters of 7 mm and 10 mm were observed against B. cereus and E. aerogenes by chloroform leaf extract while, S. aureus was found to be insensitive at high dose of extract. Whereas, chloroform flower extract showed inhibition zone of 11 mm against both B. cereus and E. aerogenes and 12 mm zone against S. aureus. Chloroform stem and root extract of Andrographis paniculata (Acanthaceae) was found effective against Staphylococcus aureus, Bacillus subtilis and E.coli.

The methanolic extracts of leaf showed considerably high activity against B. cereus, E. aerogenes and S. aureus as 13, 10 and 14 mm zones of inhibition, respectively. However, methanol flower extract exhibited 7, 8 and 9 mm inhibition zone against B. cereus, E. aerogenes and S. aureus, respectively (Figures 4a, b and c). The sensitivity of the test bacteria could be due to the presence of polyphenolic compounds such as flavonoids, tannins and most other reported bioactive compounds that are generally soluble in polar solvents such as methanol. Ali et al have also reported alkyl esters, sterols, flavonoids and pentacyclic triterpenes as the major components of Tridax procumbens. Methanol leaf extracts was selected for MIC and MBC assay as it exhibited maximum antibacterial potential (Table 2). Methanol leaf extract was found to be highly active against both B. cereus and S. aureus with MIC of 0.31 mg/ml and MBC of 1.25 mg/ml. However, E. aerogenes comparatively showed higher MIC (0.62 mg/ml) and MBC (2.5 mg/ml). The differential sensitivity of the test bacteria towards the extracts might be due to the nature of the antimicrobial agents present in the extracts and their mode of action on the different test bacteria.

Table 1: Preliminary qualitative evaluation of secondary metabolites in leaves and flower of Vernonia cinerea.

<table>
<thead>
<tr>
<th>Plant part</th>
<th>Alkaloid</th>
<th>Flavonoid</th>
<th>Polyphenol</th>
<th>Saponin</th>
<th>Tannin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leaf</td>
<td>++</td>
<td>+++</td>
<td>+</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Flower</td>
<td>+</td>
<td>+++</td>
<td>+</td>
<td>+++</td>
<td>+</td>
</tr>
</tbody>
</table>

Note: + Slightly present, ++ Moderately present, +++ Highly present

Table 2: Minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of leaf extracts of Vernonia cinerea

<table>
<thead>
<tr>
<th>Bacteria</th>
<th>Methanol extract</th>
<th>Methanol extract</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIC (mg / ml)</td>
<td>MBC (mg / ml)</td>
</tr>
<tr>
<td>Bacillus cereus</td>
<td>0.31</td>
<td>1.25</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>0.31</td>
<td>1.25</td>
</tr>
<tr>
<td>Enterobacter aerogenes</td>
<td>0.62</td>
<td>2.5</td>
</tr>
</tbody>
</table>

The data refer to mean value of three replicates ± SE.

Figure 1: Antibacterial activity of Hexane extracts of leaf and flower of Vernonia cinerea against B. cereus (a), E. aerogenes (b) and S. aureus (c). Values are means ± SE (n = 3).
The presence of wide range of these phytochemical constituents indicates that Vernonia cinerea could serve as lead plant source for the development of novel agents for various pathological disorders. More work is currently ongoing in the author’s laboratory to isolate and purify some of bioactive principles responsible for the antimicrobial and other biological potential.

Figure 2: Antibacterial activity of Petroleum Ether extracts of leaf and flower of Vernonia cinerea against B. cereus (a), E. aerogenes (b) and S. aureus (c). Values are means ± SE (n = 3).

Figure 3: Antibacterial activity of Chloroform extracts of leaf and flower of Vernonia cinerea against B. cereus (a) and E aerogenes (b) and S aureus (c). Values are means ± SE (n = 3).

Figure 4: Antibacterial activity of methanol extracts of leaf and flower of Vernonia cinerea against B. cereus (a), E aerogenes (b) and S aureus (c). Values are means ± SE (n = 3).

Methanol extract of leaf showed higher antioxidant activity as compared to the flower extract (Figure 5). This result was in accordance with the earlier work conducted on leaf extract of S. pinnata by Mai et al.31 Gowri and Vasantha32 have also reported the antioxidant potential of leaf and flower extract of Sesbania grandiflora. Recently, many natural antioxidants have been isolated from different plant materials.33, 34

The presence of wide range of these phytochemical constituents indicates that Vernonia cinerea could serve as lead plant source for the development of novel agents for various pathological disorders. More work is currently ongoing in the author’s laboratory to isolate and purify some of bioactive principles responsible for the antimicrobial and other biological potential.

Figure 5: Effects of leaf and flower methanol extracts of Vernonia cinerea and the standard ascorbic acid on the scavenging of DPPH. The data represent the percentage DPPH scavenging. All data are expressed as mean ± SE (n = 3).
Acknowledgements: The authors are thankful to the Vice Chancellor, Integral University, Lucknow, India for providing necessary facilities for the research work. We also thank to the taxonomist Dr. Tariq Husain, Scientist, NBRI, India for identification of the plant.

REFERENCES

20. Elloff JN. A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria. Planta Medica, 1998, 64, 711-713.

21. Williams BW, Cuvelier ME and Berset C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology, 1995, 28, 25-30

30. Barbour E, Sharif MA, Sagherian VK, Habre AN, Talhouk RS and Talhouk SN. Screening of selected indigenous plants...

About Corresponding Author: Dr. Mohd. Zeeshan

Dr. Mohammad Zeeshan, D. Phil. in science from University of Allahabad, specialized in Plant and Microbial biochemistry with 10 years of research experience. Presently working in the capacity of Assistant Professor, Department of Microbiology and Biotechnology, Integral University, Lko. and engaged in research related to bioactive compound isolation, purification, characterization and their biomedical application.