INTRODUCTION

Biphasic delivery systems are designed to release a drug at two different rates or in two different periods of time: they are either quick/slow or slow/quick. A quick/slow release system provides an initial burst of drug release followed by a constant rate (ideally) of release over a defined period of time and in slow/quick release system provides release vice versa. Biphasic release system is used primarily when maximum relief needs to be achieved quickly, and it is followed by a sustained release phase to avoid repeated administration. Suitable candidate drugs for this type of administration include nonsteroidal anti-inflammatory drugs (NSAIDs) antihypertensive, antihistaminic, and anti-allergic agents.

Generally, conventional controlled dosage forms delay the release of therapeutic systemic levels and do not provide a rapid onset of action. While immediate release tablets gives fast release to provide rapid onset of action, but fails to provide longer duration of action.

A relatively constant plasma level of a drug is often preferred to maintain the drug concentration within the therapeutic window. However, it is difficult to achieve, especially for once-daily dosage forms, partly because the environment for drug diffusion and/or absorption varies along the gastrointestinal (GI) tract.

On the basis of these considerations, we have proposed a new oral delivery device, in the form of a double-component tablet, in which the one portion is formulated to obtain a prompt release of the drug, with the aim of reaching a high serum concentration in a short period of time. The second portion is a prolonged-release hydrophilic matrix, which is designed to maintain an effective plasma level for a prolonged period of time.

This concept can be used to produce a biphasic delivery system combining a fast release together with the slow release period of the drug, provided that the excipients powder that fills the void spaces between the mini-tablets incorporate a part of the total drug dose. This system can produce a rapid rise in the plasmatic concentrations for some drugs (such as analgesic, anti-inflammatory, antihypertensive and antihistaminic agents) that are requested to promptly exercise the therapeutic effect, followed by an extended release phase in order to avoid repeated administrations.

The pharmacokinetic advantage relies on the fact that drug release from fast releasing component leads to a sudden rise in the blood concentration. However, the blood level is maintained at steady state as the drug is released from the sustaining granules.

Zolpidem is a prescription medication used for the short-term treatment of insomnia, as well as some brain disorders. It is a short-acting nonbenzodiazepine hypnotic that potentiates gamma-amino butyric acid (GABA), an inhibitory neurotransmitter, by binding to gamma-amino butyric acid (GABA) receptors at the same location as benzodiazepines. It works quickly (usually within 15 minutes) and has a short half-life (2–3 hours).

While Zolpidem is a rapidly acting hypnotic, it is also a rapidly eliminated hypnotic agent. As a result, Zolpidem typically starts acting within 15-30 minutes, or less, after ingestion of the tablet and its action can typically last for approximately 4-6 hours. However, this duration of action can be considered too short in some circumstances. Lengthening the duration of action would thus be desirable.

The hypnotic effects of Zolpidem have been reported primarily in the first 3 hours post-dose which can lead to
sub therapeutic effects on sleep maintenance in the later portion of the night for some patients.

The compressed mini-tablet is a biphasic release dosage form. The outer layer immediately releases drug while the mini-tablets are controlled-release. The tablet was designed to mimic initial dosing while the extended-release of drug maintains a plasma concentration for a longer duration of time than the immediate-release product.

![Figure 1: Schematic representation of manufacturing process of compressed mini tablet.](image)

Table 1: Composition of fast releasing component of compressed mini tablet.

<table>
<thead>
<tr>
<th>Ingredients (IR)</th>
<th>MF1</th>
<th>MF2</th>
<th>MF3</th>
<th>MF4</th>
<th>MF5</th>
<th>MF6</th>
<th>MF7</th>
<th>MF8</th>
<th>MF9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immediate release component</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zolpidem Tartrate</td>
<td>5.23</td>
<td>6.87</td>
<td>6.87</td>
<td>5.23</td>
<td>5.23</td>
<td>5.23</td>
<td>5.23</td>
<td>6.25</td>
<td>6.25</td>
</tr>
<tr>
<td>Croscarmellose sodium</td>
<td>75</td>
<td>75</td>
<td>100</td>
<td>100</td>
<td>50</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>25</td>
</tr>
<tr>
<td>MCC PH 102</td>
<td>83.77</td>
<td>82.13</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>Ludiflash</td>
<td>74</td>
<td>74</td>
<td>63.13</td>
<td>64.77</td>
<td>64.77</td>
<td>84.77</td>
<td>84.77</td>
<td>83.75</td>
<td>83.75</td>
</tr>
<tr>
<td>HPMC E50</td>
<td>10</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Magnesium stearate</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total weight</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>Extended release component</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zolpidem Tartrate</td>
<td>7.27</td>
<td>5.63</td>
<td>5.63</td>
<td>7.27</td>
<td>7.27</td>
<td>7.27</td>
<td>7.27</td>
<td>7.8</td>
<td>7.8</td>
</tr>
<tr>
<td>HPMC K100M</td>
<td>30</td>
<td>30</td>
<td>25</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>MCC PH 102</td>
<td>40</td>
<td>40</td>
<td>30</td>
<td>40</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lactose</td>
<td>30.73</td>
<td>32.37</td>
<td>27.37</td>
<td>20.73</td>
<td>67.73</td>
<td>20.73</td>
<td>67.73</td>
<td>61.75</td>
<td>61.75</td>
</tr>
<tr>
<td>Tartaric acid</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Magnesium stearate</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Croscarmellose Na</td>
<td>-</td>
<td>-</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Total weight</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
</tr>
</tbody>
</table>

MATERIALS AND METHODS

Materials

Zolpidem Tartrate, a sparingly soluble drug (Gifted by Microlab Pvt Ltd.) was incorporated in both components of the biphasic delivery system. For the preparation of the prolonged release component (mini-tablets), Hydroxypropyl Methylcellulose (HPMC, Methocel® K100M,) was considered, whereas for the fast release component, Microcrystalline Cellulose (Avicel PH 102) and Sodium Croscarmellose (Ac-Di-Sol) were used.

Preparation of the biphasic delivery system

The qualitative and quantitative composition of the different formulations of the biphasic delivery system can be seen in Table 1.

Dose Calculation

For sustained drug release up to 12h, the total dose of drug required was calculated based on the conventional dose. The total dose was calculated using the following equation (1).

\[Dt = \text{Dose} \times (1 + 0.693 \times t/t_{1/2}) \]

Where, \(Dt \) = Total dose, \(\text{Dose} \) = Immediate release dose, \(t \) = Total time period for which sustained release is required, \(t_{1/2} \) = Half-life of drug. For Zolpidem Tartrate: \(12.5 = \text{Dose} \times (1 + 0.693 \times 6/4) \). \(\text{Dose} = 6.13 \text{ mg Diclofenac sodium} \).

Prolonged-release component (mini-tablets)

The mini-tablets contained HPMC as controlling agents. All materials were sieved and the fractions below 63µm were considered to minimize the lag time observed during drug release when coarse fractions were used and to prevent changes on properties of the tablets due to changes in the size of particles. Mini-tablets, weighing 40.0±1.0 mg, were prepared by direct compression with flat tip punches and dies with 4mm diameter.
Fast release component

Microcrystalline cellulose (Avicel PH 102) was used because of its good compaction and disintegration properties. Sodium croscarmellose was used as a super disintegrant to obtain an immediate release of the drug.

Preparation of compressed mini tablet

For the preparation of the biphasic delivery system we had used 250mg of fast releasing component for single tablet. Compressed mini-tablet was prepared using 9.45mm punch. (Rimek mini press-1, Karnavat Engineering Ltd, Mehsana, Gujarat). The die of the tabletting machine was progressively filled by hand with the half amounts of the fast release component and then 3 mini-tablets were placed inside the die cavity. Then half of the remaining fast releasing component was placed over mini tablet (Table 1) prior to compression.

Physical characterization of the compressed mini-tablets system

Compressed mini-tablets were characterized for weight variation, thickness, hardness, friability and dissolution.

Weight variation test

Twenty tablets were taken and their weight was determined individually and collectively on a digital weighting balance. The average weight of one tablet was determined from the collective weight.

Hardness test:

The hardness of the tablet was determined using Monsanto Hardness Tester.

Friability test

Six tablets from each batch were examined for friability using Roche Friabilator (Electro lab EF-2, USP) and the equipment was run for 4min at 25 revolutions per minute. The tablets were taken out, dedusted and % friability was calculated.

\[\% \text{Friability} = \left(\frac{\text{Loss in weight}}{\text{Initial weight}} \right) \times 100 \] (2)

Dissolution profile

The similarity factor \((f_2) \) given by SUPAC guidelines for modified release dosage forms was used as a basis for comparing dissolution profiles. Dissolution profiles are considered to be similar when \(f_2 \) is between 50 to 100. This similarity factor is calculated by the following formula:

\[
f_2 = 50 \times \log \left[\left(\frac{1}{n} \sum \frac{(R_t - T_t)^2}{(R_t + T_t)^2} \right) ^{0.5} \times 100 \right]
\]

where \(n \) is the number of experimental points in the in vitro dissolution assay and \(R_t \) and \(T_t \) are the mean percentage of dissolved drug from the reference and test formulations.

Kinetic analysis of dissolution data

The rate and mechanism of release of Zolpidem Tartrate from the prepared compressed mini-tablets were analyzed by fitting the dissolution data into the zero-order equation:

\[
Q = k_0 t
\] (1)

where \(Q \) is the amount of drug released at time \(t \), and \(k_0 \) is the release rate constant, fitted to the first order equation:

\[
\ln (100-Q) = \ln 100 - k_1 t
\] (2)

where \(k_1 \) is the release rate constant. The dissolution data was fitted to the Higuchi’s equation:

\[
Q = k_2 t^{1/2}
\] (3)

Where \(k_2 \) is the diffusion rate constant.

The dissolution data was also fitted to the well known equation (Korsmeyer equation), which is often used to describe the drug release behaviour from polymeric systems:

\[
\log(M_t/M_\infty) = \log k + n \log t
\] (4)

where \(M_t \) is the amount of drug released at time \(t \), \(M_\infty \) is the amount of drug release after infinite time, \(k \) is a release rate constant incorporating structural and geometric characteristics of the tablet and \(n \) is the diffusion exponent indicative of the mechanism of drug release.

In vitro dissolution testing

Dissolution study was conducted for all the formulation using USP type-I, basket apparatus (Elect lab, Mumbai, India.). The dissolution test was performed using 900 ml 0.01N HCl as the dissolution medium at 100 rpm and 37°C±0.5°C. Five millilitres of aliquots were periodically withdrawn and the sample volume was replaced with an equal volume of fresh dissolution medium. The samples were analyzed spectrophotometrically at 294 nm. The cumulative fraction of the drug released was calculated from the total amount of Zolpidem Tartrate and plotted as a function of time.

Figure 2: Fracture equatorial showing surfaces of the compressed mini-tablets system.
Physical properties of the compressed mini-tablets

Systems: Compressed mini-tablets were prepared for biphasic drug delivery successfully. For the preparation of compressed mini-tablets different fraction of dose in the both the fast release component and extended release component was tried to get release pattern that matches the guideline for Zolpidem Tartrate extended release tablet alone and compressed mini-tablets system. One of the major characteristics of the mini-tablets is that they should not fuse into a non-disintegrating matrix during compaction.

Table 2: Results of physical test of mini-tablets

<table>
<thead>
<tr>
<th>Formula</th>
<th>Weight (mean ± SD, mg) (n = 20)</th>
<th>Tensile Strength (mean ± SD, MPa) (n = 10)</th>
<th>Thickness (mean ± SD, mm) (n = 40)</th>
<th>Friability (%) (n = 20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MF1</td>
<td>39.90±0.64</td>
<td>4.7±0.44</td>
<td>3.24±0.048</td>
<td>0.83</td>
</tr>
<tr>
<td>MF2</td>
<td>39.75±0.63</td>
<td>4.8±0.27</td>
<td>3.20±0.035</td>
<td>0.41</td>
</tr>
<tr>
<td>MF3</td>
<td>39.70±0.57</td>
<td>4.9±0.22</td>
<td>3.18±0.008</td>
<td>0.82</td>
</tr>
<tr>
<td>MF4</td>
<td>39.85±0.58</td>
<td>4.7±0.44</td>
<td>3.17±0.013</td>
<td>0.41</td>
</tr>
<tr>
<td>MF5</td>
<td>39.80±0.61</td>
<td>4.8±0.27</td>
<td>3.19±0.008</td>
<td>0.82</td>
</tr>
<tr>
<td>MF6</td>
<td>39.85±0.67</td>
<td>4.5±0.35</td>
<td>3.17±0.008</td>
<td>0.83</td>
</tr>
<tr>
<td>MF7</td>
<td>39.84±0.68</td>
<td>4.5±0.50</td>
<td>3.19±0.015</td>
<td>0.83</td>
</tr>
<tr>
<td>MF8</td>
<td>39.85±0.67</td>
<td>4.2±0.27</td>
<td>3.20±0.015</td>
<td>0.83</td>
</tr>
<tr>
<td>MF9</td>
<td>39.85±0.58</td>
<td>4.7±0.27</td>
<td>3.18±0.010</td>
<td>0.83</td>
</tr>
</tbody>
</table>

*All results presented in mean (±S.D)

Table 3: Results of physical test of compressed mini-tablet

<table>
<thead>
<tr>
<th>Formula</th>
<th>Weight (mean ± SD, mg) (n = 20)</th>
<th>Tensile Strength (mean ± SD, MPa) (n = 10)</th>
<th>Thickness (mean ± SD, mm) (n = 40)</th>
<th>Friability (%) (n = 20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MF1</td>
<td>370.15±0.87</td>
<td>3.1±0.22</td>
<td>6.76±0.032</td>
<td>0.315</td>
</tr>
<tr>
<td>MF2</td>
<td>370.10±0.91</td>
<td>3.5±0.50</td>
<td>6.74±0.029</td>
<td>0.495</td>
</tr>
<tr>
<td>MF3</td>
<td>370.05±0.94</td>
<td>3.6±0.22</td>
<td>6.78±0.023</td>
<td>0.495</td>
</tr>
<tr>
<td>MF4</td>
<td>370.20±0.89</td>
<td>3.1±0.22</td>
<td>6.74±0.040</td>
<td>0.539</td>
</tr>
<tr>
<td>MF5</td>
<td>320.10±0.55</td>
<td>3.3±0.44</td>
<td>6.40±0.018</td>
<td>0.520</td>
</tr>
<tr>
<td>MF6</td>
<td>320.05±0.68</td>
<td>3.4±0.41</td>
<td>6.43±0.027</td>
<td>0.520</td>
</tr>
<tr>
<td>MF7</td>
<td>320.15±0.67</td>
<td>3.2±0.27</td>
<td>6.53±0.046</td>
<td>0.416</td>
</tr>
<tr>
<td>MF8</td>
<td>319.90±0.71</td>
<td>3.6±0.41</td>
<td>6.48±0.027</td>
<td>0.521</td>
</tr>
<tr>
<td>MF9</td>
<td>320.10±0.55</td>
<td>3.9±0.22</td>
<td>6.39±0.016</td>
<td>0.624</td>
</tr>
</tbody>
</table>

*All results presented in mean (±S.D)

Table 4: Fitting of the kinetics model (release rate constants, \(K_0\), \(K_w\), \(K_c\), and exponent \(n\), together with the determination coefficients, \(R^2\)) for compressed mini-tablets system.
It was observed that red colored mini-tablets were able to withstand the compression force after the crushing test. Visual inspection of the fracture surfaces of the biphasic system revealed that the appearance of the mini-tablets in the compact system was similar to the original mini-tablets. Thus, these subunits tended to keep their integrity when compacted and remained as coherent individual units after the process of tabletting (Fig. 2). These units did not fragment into smaller units after the compaction process. This lack of fragmentation might be caused by the unique stress conditions of the mini-tablets during uniaxial compression in the die, i.e., the mini-tablets are stressed from several directions simultaneously, making the fracturing of these subunits relatively difficult.

Dissolution testing of the compressed mini-tablets system: Figs. 3 to 5 show the Zolpidem Tartrate release profiles from compressed mini-tablets systems. For the compressed mini-tablets systems under investigation, the release profiles are characterized by a burst release of Zolpidem Tartrate, followed by a slow release phase, typical of a biphasic delivery system. For all formulations, the large tablets were rapidly disintegrated into both powder (releasing the immediate dose of the drug) and individual mini-tablets, which sustained the release of the drug. In fact, the dissolution profile of the fast release component occurs within a few minutes, due to the prompt disintegration of the system in contact with the dissolution media. The mini-tablets, upon dispersion in the dissolution media, controlled the Zolpidem tartrate release at a slow rate for almost 6-7 h.

CONCLUSION

A biphasic oral delivery system was developed by compressing mini-tablets into a tablet dosage form. The compressed mini-tablets showed slight deformation and no fragmentation. This technology may be achieved by fast/slow delivery system. This is characterized by an initial rapid release phase, corresponding to the drug release contained in the powder layer filled between mini-tablets, followed by a period of slow release, corresponding to the drug release of mini-tablets. The two different release phases can be easily adjusted in a wide range of values of both delivery rate and ratio of the dose fractions, on the basis of the pharmacokinetics and therapeutic needs, to perform the desired in vivo profile. Key variables of this study included the external powder/mini-tablets ratio and type of matrix mini-tablets. The results show that the release profile is strongly dependent on composition of subunits, making up the drug sustained dose. After the disintegration of this system, the HPMC mini-tablets were able to release a second fraction of the dose in a prolonged time (6 h) at a constant rate and with an identical dissolution profile to the non-compressed mini-tablets, suggesting their physical integrity after compression.
Acknowledgements: The authors are thankful to J.M. Patel, Maruti Engineering works, Bapunagar, Ahmedabad, Gujarat, for providing tabletting punches of 4mm diameter.

REFERENCES

1. Lopes CM, Lobo JS, Pinto JF and Costa PC, Compressed Matrix Core Tablet as a Quick/Slow Dual-Component Delivery System Containing Ibuprofen, AAPS PharmSciTech 2007, 8 (3), Article 76.

5. Patra CN, Kumar AB, Pandit HK, Singh SP and Devi MV, Design and evaluation of sustained release bilayer tablets of propranolol hydrochloride, P. G. Department of Pharmacy College of Pharmaceutical Sciences Berhampur-760002 Orissa, India.

6. Zolpidem-Wikipedia, the free encyclopaedia.

About Corresponding Author: Mr. Hitesh P. Patel

Mr. Hitesh P. Patel graduated from Sardar Patel University, Gujarat. India and post graduated from Rajiv Gandhi University of Health Science, Karnataka, India. At post graduation level taken specialization in pharmaceutics, completed master thesis in "Bi-phasic Drug Delivery System".