Raman R Chandak¹, Nishikant K Bhairat*¹, Subhash J Devdhe², Hiral F Majmudar³
Department of Pharmacognosy & Phytochemistry, Yash Institute of Pharmacy, Aurangabad-431134, Maharashtra, India.
Department of Pharmacology, Yash Institute of Pharmacy, Aurangabad-431134, Maharashtra, India.
*Corresponding author’s E-mail: nishikant01@rediffmail.com

Received on: 28-10-2010; Finalized on: 16-12-2010.

ABSTRACT

Herbal drugs are traditionally used in various parts of the world to cure different diseases. The Ayurvedic and Siddha medical systems are very famous medical practices in Indian traditional medicines. In the present research studies, Alcohol and aqueous extracts from the leaves of Cleome viscosa were investigated for their anthelmintic activity against Pheretima posthuma and Ascardia galli. Three concentrations (50, 100 & 150 mg/ml) of each extracts were studied in activity, which involved the determination of time of paralysis and time of death of the worm. Both the extracts exhibited significant anthelmintic activity at highest concentration of 150 mg/ml. Albendazole in same concentration as that of extract was included as standard reference and distilled water as control. The anthelmintic activity of alcohol and aqueous extracts of Cleome viscosa has therefore been demonstrated for the first time.

Keywords: Anthelmintic Activity, Ascardia Galli, Cleome viscosa, Pheretima Posthuma.

INTRODUCTION

Cleome viscosa Linn. (Capparidaceae) is also known as Tickweed, or Spider plant (fig 1). It is found throughout the greater part of India, often in waste places and is known as Hurrur (Hindi) in Indian traditional medicine².

![Figure 1: Cleome viscosa Linn](image)

In Asia and Africa the leaves and seeds used as a rubefacient and vesicant and to treat infections, fever, rheumatism and headache. The whole herb is used in treatment of ringworm, flatulence, colic, dyspepsia, constipation, cough, bronchitis, cardiac disorders.¹-³ Inflammation of the middle ear and applied on wounds and ulcers. Traditionally, this plant is used in various disorders such as diarrhoea, fever, inflammation, liver diseases, bronchitis, skin diseases, and malarial fever. The juice is useful in piles, lumbago and earache³. The analgesic, antipyretic and anti-diarrhoeal activities of the extract have been reported by researchers. In our field studies of ethnomedicinal plants of Bundelkhand, it was noted that the fresh leaves of Cleome viscosa are widely used as medicine for jaundice. The seeds and its oil have anthelmintic properties but they are ineffective in treating roundworm infections³. An aqueous seed extract displayed significant analgesic activity in mice and local anaesthetic activity in guinea pigs⁴. In tests with rats the anti-diarrhoeal and antipyretic activities of the extracts have been confirmed⁷-⁹. The leaf juice of Cleome viscosa is known to be effective against ringworm. Therefore the objective of this work was to explore the anthelmintic properties of Cleome viscosa leaves.

MATERIALS AND METHODS

Extraction: The fresh leaves of Cleome viscosa were collected and authenticated from the local market of Aurangabad, Maharashtra state, India. Dried leaves ground to coarse powder. Powder was first defatted with Pet-ether and then extracted with Methanol which is further evaporated to dryness to obtain alcoholic extract. Aqueous extract were obtained by maceration for 24 hours.

Experimental: Alcohol and Aqueous extracts from the leaves of Cleome viscosa were investigated for their anthelmintic activity against Pheretima posthuma and Ascardia galli. Various concentrations (60-150 mg/ml) of each extract were tested in the bioassay, which involved determination of time of paralysis and time of death of the worms.¹⁰ With minor modifications the assay was performed on adult Indian earthworm, Pheretima posthuma due to its anatomical and physiological resemblance with the intestinal roundworm parasite of human beings¹¹-¹³. Because of easy availability, earthworms have been used widely for the initial evaluation of anthelmintic compounds in vitro¹⁴-¹⁶. Indian adult earthworms (Pheretima posthuma) collected from moist soil and washed with normal saline to remove all faecal matter were used for the anthelmintic study. The earthworms of 3-5 cm in length and 0.1-0.2 cm in width were used for all the experimental protocol. Ascardia galli worms are easily available in plenty from freshly slaughtered fowls and their use, as a suitable model for
screening of anthelmintic drug was advocated earlier. In the first set of experiment, six groups of six earthworms were released in to 50 ml of solutions of Albendazole, aqueous and alcoholic extracts of leaves of Cleome viscosa (50, 100 and 150 mg/ml each) in distilled water. Albendazole was used as reference standard while distilled water as control. Observations were made for the time taken to paralysis and death of individual worms. Time for paralysis was noted when no movement of any sort could be observed except when the worms were shaken vigorously. Death was concluded when the worms lost their motility followed with fading away of their body colors. Same experiment was done for Ascardia galli worms only the difference was solutions were prepared in normal saline solutions.

Table 1: Anthelmintic activity of extracts of Cleome viscosa

<table>
<thead>
<tr>
<th>Extracts of LS</th>
<th>Concentration mg/ml</th>
<th>Pheretima posthuma</th>
<th>Ascardia galli</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>P</td>
<td>D</td>
</tr>
<tr>
<td>Aqueous extract</td>
<td>50</td>
<td>85.0± 0.5</td>
<td>115.2±0.6</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>71±0.3</td>
<td>100.98±0.2</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>62.73±0.8</td>
<td>94.63±0.1</td>
</tr>
<tr>
<td>Alcoholic extract</td>
<td>50</td>
<td>66±0.12</td>
<td>70±0.43</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>41±0.20</td>
<td>61±0.12</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>22±0.9</td>
<td>32±0.33</td>
</tr>
<tr>
<td>Albendazole</td>
<td>50</td>
<td>1.4±0.7</td>
<td>52.5±0.4</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0.8±0.12</td>
<td>26.2±0.1</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>0.3±0.17</td>
<td>17.5±0.8</td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

P: Time taken for Paralysis (min), D: Time taken for Death of worms (min).

RESULTS AND DISCUSSION

Preliminary phytochemical screening of alcoholic extract revealed the presence of anthraquinone glycosides, phenolic compounds and steroids while aqueous extract showed presence of glycosides and phenolic compounds. From the results shown in table no.1, the predominant effect of Albendazole on the worm is to cause a flaccid paralysis that result in expulsion of the worm by peristalsis. Albendazole inhibit cytoplasmic microtubule synthesis and blocks the glucose uptake of larvel and adult stage thereby depletion their glycogen stores and decreasing the formation of ATP and leading immobilization and death. The alcoholic leaves extract of Cleome viscosa demonstrated paralysis as well as death of worms in a less time as compared to albendazole especially at higher concentration of 150 mg/ml. While water extract also shown significant activity. Phytochemical analysis of the crude extracts revealed presence of flavonoids as one of the chemical constituent. Polyphenolic compounds show anthelmintic activity. Some synthetic phenolic anthelmintics e.g. niclosamide, oxyclozanide and bithionol are shown to interfere with energy generation in helminth parasites by uncoupling oxidative phosphorylation. It is possible that phenolic content in the extracts of Cleome viscosa produced similar effects.

CONCLUSION

In conclusion, the traditional use of leaves of Cleome viscosa as an anthelmintic have been confirmed as the leaves extracts displayed activity against the worms used in the study. Further studies need to establish the mechanisms (S) of action are required.

REFERENCES

About Corresponding Author: Mr. Nishikant Kalyan Bhairat

Mr. Nishikant Kalyan Bhairat is the best performer in the national level competition "Pharmafest 2010" which is jointly organised by Baroda college of pharmacy & parul institute of pharmacy (Gujrat). Presently he is studying pharmacy education in "Yash Institute of Pharmacy, Aurangabad". He completed his Research by hard work & he want to prove students also can do perfect research. Now he is doing research on another activity of plant "Cleome Viscosa Linn."