INTRODUCTION

Herbal medicines form an important part of health care system in India because they are easily available, cheaper and safer than synthetic drugs. Plants produce a diverse array of bioactive molecules, making them a rich source of diverse type of medicines. Thus, natural products with pharmacological or biological activities still play a very important role in medicine. Thromboembolic disorders such as pulmonary emboli, deep vein thrombosis, strokes and heart attacks are the main causes of morbidity and mortality in developed countries. Thrombolytic therapy uses drugs called thrombolytic agents, such as alteplase, streptokinase, urokinase, and tissue plasminogen activator (TPA) to dissolve clots.

Brine shrimp larvae have been used as a bioassay for a variety of toxic substances. The method has also been applied to plant extracts in order to facilitate the isolation of biologically active compounds. Antioxidants are widely used as ingredients in dietary supplements and are exploited to maintain health and prevent oxidative stress-mediated diseases such as cancer, atherosclerosis, diabetes, inflammation and ageing. Recently, many antioxidants have been isolated from different plant materials. Curry leaf tree (Murraya koenigii L., Family: Rutaceae) is a plant which has various important uses in the traditional system of medicine in Eastern Asia. Based on ethno medicine, Murraya koenigii is used as a stimulant, antidysentric and for the management of Diabetes Mellitus. The plant is highly valued for its leaves an important ingredient in an Indian cuisine to promote appetite and digestion.

Therefore, the present study has been performed to evaluate Murraya koenigii for its thrombolytic, cytotoxic and antioxidant properties.
way ANOVA. Serum cholesterol and clot lysis were compared by correlation analysis. LC50 values for brine shrimp lethality bioassay were calculated by probit analysis. Experimental results of total antioxidant activity were expressed as mean ± S.D.

RESULTS AND DISCUSSION

Qualitative analysis of phytochemical constituents

Phytochemical screening of the plant to determine the presence or absence of bioactive compounds was performed in this study. The results are tabulated in table 1.

Table 1: Phytochemical constituents of Murraya koenigii

<table>
<thead>
<tr>
<th>Phytochemicals</th>
<th>Murraya koenigii</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Aqueous</td>
<td>Ethanol</td>
<td></td>
</tr>
<tr>
<td>Carbohydrates</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Aminoacids and proteins</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Phenols</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Sterol and steroids</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Saponins</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Quinones</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Alkaloids</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Flavonoids</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Tannins</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Volatile oil</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

‘+’ → Presence

In the present study phytochemical analysis was done to detect the active components in the plant extracts. Phytoconstituents namely carbohydrates, proteins, phenols, steroids, saponins, quinones, alkaloids, flavonoids, tannins and volatile oils were present in both aqueous and ethanolic extracts of Murraya koenigii.

These results are in agreement with 11 who indicated that the phytochemical screening of crude extracts of Vitex leucoxylon revealed the presence of alkaloids, flavonoids, terpenoids, steroids, phenolics, carbohydrates, amino acids, and quinones.

Thrombolytic activity of Murraya koenigii

Thrombolytic activity of aqueous extract of Murraya koenigii was determined using normal human blood with a series of concentration from 20 to 100 mg/ml and the percent clot lysis was determined. The values are represented in figure 1.

Clavix used as a positive control was incubated at 37°C for 90 minutes along with the clot and it exhibited 58.38% clot lysis. The aqueous extract of Murraya koenigii showed a proportional increase in clot lysis with the increase in sample concentration and it exhibited 26.17% lysis for a maximal concentration of 100mg/ml. Water used as negative control exhibited minimum % of clot lysis (11.45). These findings are in agreement with previous study,7 who state that the percent clot lysis of the Fagonia Arabica plant extract was significantly higher when compared to the negative control (water).

Comparison of serum cholesterol level and % clot lysis of the plant extract

Total cholesterol was estimated in serum obtained from blood samples used for clot lysis. A comparison was made between serum cholesterol and percent clot lysis. The values are indicated in figure 2.

Biosafety screening

Brine shrimp lethality assay was carried out to determine the cytotoxic effect of plant extract. The lethality of aqueous extract of Murraya koenigii to the brine shrimp (Artemia salina) was determined after 24 hours of exposure and the findings are indicated in figure 3.

The result of Brine shrimp assay was expressed in percentage lethality. The percentage mortality increased with increase in concentration of aqueous extract of Murraya koenigii and showed a significant cytotoxic
effect against brine shrimp nauplii with an LC50 value of 6.46 mg/ml. This finding is in agreement with who reported that the bioassay with methanolic extract of *Tridax procumbens* and *Vernonia cinerea* showed better inhibition against brine shrimp.

Figure 3: Cytotoxic effect of *Murraya koenigii*

Total antioxidant activity

The total antioxidant activity in terms of Gallic acid equivalence (mg/g) was calculated and the results are represented in figure 4.

Figure 4: Total antioxidant activity of *Murraya koenigii*

Determination of the total antioxidant activity of the aqueous extract revealed an increasing trend with increase in concentration and the range was found to be 260.0 and 350.81 mg/g. The above results are in agreement with old literature, who found that Iranian Ocimum accessions have strong natural antioxidant properties and *Mentha piperita* has higher antioxidant activity.

CONCLUSION

Plants which possess medicinal properties are being exploited for their use in herbal preparations. The findings revealed that, *Murraya koenigii*, the plant chosen for the present study has antioxidative, thrombolytic and cytotoxic potential and can be further explored for their potent use in pharma industries.

REFERENCES

Source of Support: Nil, **Conflict of Interest:** None.