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ABSTRACT 

The process of drug discovery from discovering a new drug molecule to registering it for marketing and commercialization are very 
complex and lengthy. The huge amount, a long period of time, and the clinical trials are required before a drug to be registered for 
human use.  Nowadays there is development of various new and very promising notion to the drug development which can modified the 
traditionally drug development process, biosimulation are one of them. Biosimulation represent simulation the dynamics of biological 
systems and thereby analyze and predict system behavior in terms of mathematical expression with the help of modern computers. The 
key value of biosimulation comes from understanding clinical outcomes in discovery or development well before any human trial occurs. 
Modeling and simulation are now being adopted by the pharmaceutical industry to understand the complexity of human physiology and 
predict human response to therapies. 
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INTRODUCTION 

Most of the time and money of the R & D section of 
pharmaceutical industry will be spent on the discovery and 
proper evaluation of new drug. A normal drug discovery 
and development cycle, which is the time between the 
discovery of a new drug and its delivery to the market, can 
easily take up to 10-15 years. Taking into consideration 
the expenses in all the phases, the average cost of a 
pharmaceutical product goes up to $800 million1. But 
recently it was found that decline in drug approvals and 
the increase in late-stage failures indicate that the ability to 
generate and screen large numbers of molecules has not 
improved the drug pipeline. According to the Tufts Centre 
for the Study of Drug Development, in Medford, 
Massachusetts, only one in 1,000 compounds tested makes 
it into human trials, and only one in five of those emerges 
as a drug2.  The Food and Drug Administration recently 
announced the Critical Path Initiative, which attempts to 
address the issues of cost and time in the drug 
development process, and outlined the need for the 
industry to adopt technologies that may help3. 

In order to avoid all such hurdle in discovery and 
development of new drug, a most promising technology 
was developed known as ‘biosimulation’. The 
biosimulation is relatively new tool in the pharmaceutical 
drug development and healthcare that promising 
tremendous benefits, saving both time and money and 
improving the predictability in early stage of drug 
development. Biosimulation refers to the simulation of 
biological systems. Any living system consisting of 
biological processes - whether a kidney, a liver, a heart, 
the body as a whole - can be defined as a biological 
system and by the use of advanced computer models,  
makes it possible to simulate the behaviour of biological 
systems in terms of their components and the interactions 
involved. 

Biosimulation is a distinct part of the emerging field 
termed systems biology. Systems biology combines 

concepts from many scientific disciplines to obtain an 
integral understanding of complex biological systems in 
disease and health4. The biosimulation is often associated 
with the term ‘in silico’ biology, which is used to represent 
the biological experiments carried out entirely by means of 
computer. ‘In silico’ biology appeared earlier than 
biosimulation, it was first used as an official term in 1989. 
The biosimulation itself is a relatively new field in drug 
development and healthcare industry. It emerged in the 
beginning of the 21st century, after the first draft of human 
genome was unveiled in 20005.  

 
Figure 1: Comparison of traditional and virtual (biosimulation) 
screening in terms of expected cost and time requirements. 

WHAT IS BIOSIMULATION  

Biosimulation is new notion in drug development industry, 
which is based on expressing the biological systems in 
mathematical expressions, thus, capturing biological 
elements and their relationships, and simulating the 
behaviour of a certain system in different situations5.  
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The relationships between elements are represented using 
differential equations, allowing simulation techniques to 
predict the behaviour of the system and the quantities of 
the biological elements over time. The model may be 
configured with parameter changes to predict new 
outcomes for different scenarios, e.g., for new drug targets 
or new clinical trial protocols6. 

Biosimulation uses mathematical representation of the 
real-life processes inside the human body, which is 
expressed in interconnected sets of differential equations. 
Using differential equations for the simulation of the 
biology systems allows tracking the response of the 
systems to different factors, their behaviour and 
quantitative change over time. These mathematical models 
are built based on a huge amount of information about the 
biology systems, sub cellular pathways and human 
genome. Such information can be obtained from 
laboratory studies, researches and investigations. 
Validation of the model can be done by means of clinical 
data, ensuring that the model reflects the behaviour of a 
given patient under the same clinical protocol. 

Models obtained on the previous stage are loaded into the 
computer or computer network, processed and prepared 
for simulation. Starting the simulation invokes the 
calculation of complicated processes inside the human 
body. Every model has to be checked by the scientists and 
experts for feasibility and it should be ensured that the 
calculation done by the computer reflects the real life 
behaviour of the investigated organism. 

BIOSIMULATION MODEL DEVELOPMENT 
APPROACHES 

A biosimulation model quantitatively captures biological 
elements and their relationships. The relationships 
between elements are represented using differential 
equations, allowing simulation techniques to predict the 
behavior of the system and the quantities of the biological 
elements over time. The model may be configured with 
parameter changes to predict new outcomes for different 
scenarios, e.g., for new drug targets or new clinical trial 
protocols. Although current best practices in biosimulation 
modeling include adherence to some annotation 
standards7, integrating models remains a daunting task 
which is further hampered by conflicting computational 
languages, differences in implicit assumptions, and 
pervasive coding errors7,8. Over the past decade, 
physiology-based mathematical models and biosimulation 
systems have been applied to both target identification and 
validation9-13. For example, physiological models of 
cancer growth and therapy have been used to suggest 
optimal chemotherapeutic regimens in breast cancer14-16. 
Similarly, a model of the heart was developed to 
characterize the pathophysiology underlying 
electrocardiographic dysfunction17,18. A number of 
approaches are being taken to understand complex 
biological systems19. There are two main approaches in 
biosimulation that are being extensively used at the 
moment. Those are top-down and bottom-up techniques. 

1. Bottom-up approaches: 

Bottom-up approach aims at building models of 
biochemical pathways, then cells, then tissues and organs, 

and finally a virtual human that can reproduce a clinical 
trial or be applied to address many other medical problems 
(such as environmental pollutants, blunt force trauma 
effects, etc). 

Ultimately, such a system would have great value for drug 
discovery and development. A bottom-up approach 
focuses on the measurement and description of complex 
systems using the building blocks – their interactions and 
dynamic properties, such as kinetic parameters.  

2. Top-down approaches: 

This approach starts with the clinical manifestations of a 
disease, then drives down deeper to focus on the 
subsystems required to represent that disease’s 
pathophysiology. These top-down models are built with 
enough detail to simulate human behavior for use in 
focused research efforts (e.g. for characterizing specific 
targets of interest) and are validated against data sets of 
clinical, animal and in vitro data. Given the top-level 
starting point of a disease (i.e. symptoms and clinical 
presentations), clinical data can thus be used as part of the 
modeling process, providing a powerful constraint that is 
not available when modeling at lower levels using a 
bottom-up approach. 

When testing a specific pharmaceutical product on a 
designed simulation model it is enough if only 
physiological systems that are affected by the drug, i.e. 
“drug targets”, are included and described in detail, and 
the rest of the sub cellular biochemical pathways are 
mentioned on a high level. This gives the scientists an 
opportunity to focus and concentrate all efforts on the 
main areas of interest. 

3. Hybrid models 

Bottom-up models serve as scaffolds for top-down models 
by providing information of possible and potential 
interactions and sub processes, how these sub processes 
respond to drugs and infection and how matter and 
information is passed between sub processes and through 
different scales. Such hybrid approaches benefit from 
bottom-up molecular measurements and knowledge as 
well as top down predictive modeling. A ‘post genomic 
physiology’ could span many different levels of biology, 
from molecules to whole organisms, moving away from 
‘naïve reductionism’ towards a discipline that fosters 
integration and synthesis 20. 

CLASSIFICATION OF BIOSIMULATION 

Biosimulation can be categorized into two general classes 
viz small scale biosimulation and large scale biosimulation 
depending upon mathematically equation and various 
parameters involves.  

1. Small-scale biosimulations: 

Small-scale biosimulations, consisting of a few equations 
and parameters that are designed to address a specific, 
well-defined problem and have been useful tools in the 
drug development process and clinical management of 
disease. Small-scale biosimulations have been particularly 
useful for interpreting clinical data and developing novel 
biomarkers. Some of the example small-scale 
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biosimulations that have been used to help collect and 
interpret clinical data are summarized as below: 

Case 1 : HIV-1 replication biosimulation 

Acquired immunodeficiency syndrome (AIDS) is a 
chronic disease that begins with HIV infection and in 
adults progresses over a median period of ten years. 
Measurement of the plasma concentration of HIV RNA, 
known as the viral load, is considered the best predictor of 
disease progression in untreated HIV-infection21. 

To investigate HIV replication dynamics, Perelson et al. 
developed a biosimulation of HIV and T-cell dynamics 
following administration of a potent HIV protease 
inhibitor22. By assuming that the system was in a quasi-
steady state prior to therapy, and that the number of 
uninfected T cells would not appreciably change over the 
first week of therapy, the authors were able to analytically 
solve the three ordinary differential equations of their 
model and express the viral load as a function of time. 
Clinical measurements of viral load were made several 
times over the course of one week of therapy, and model 
parameter values were adjusted to best match these data. 
This provided in vivo parameter estimates of HIV 
clearance and the rate of loss of HIV-producing T cells for 
each patient. From these parameter estimates, Perelson et 
al. computed the infected T-cell lifespan, the HIV 
production rate prior to therapy, and the average viral 
generation time. 

The numerical parameter estimates suggested that HIV 
replication and turnover were much larger than previous 
estimates. Based on these new estimates, Perelson et al. 
made three conclusions that are important for the 
development of HIV treatments. First, effective anti-viral 
therapies will act within a few days to detectably lower the 
plasma viral load. Thus, clinical efficacy of an anti-viral 
compound can be determined rapidly. Second, the risk of 
developing drug-resistant viruses is high given the 
estimated replication rate and the previously measured 
rapid mutation rate of HIV. Thus, treatments should 
consist of a combination of anti-retroviral agents, 
requiring the virus to mutate simultaneously at multiple 
positions before acquiring drug resistance. Third, although 
only two to three weeks of anti-viral treatment is necessary 
to decrease viral load by approximately 99%, treatment 
regimens must be continued for a sufficient time to deplete 
other viral compartments, such as latently infected cell 
populations and sanctuary sites, which may spark a high 
rate of viral replication if therapy is withdrawn. These 
insights have ‘transformed thinking about HIV disease and 
have had a major impact on clinical management’21. 
Further development and use of HIV biosimulations 
continue to provide a better understanding of disease 
processes23. 

Case 2: Minimal-model glucose biosimulation 

Insulin is a polypeptide harmone produced by the beta cell 
of islet of langerhans of pancreas. It has profound 
influences on many physiological process including 
hepatic glucose production and skeletal muscle glucose 
uptake. Decreased sensitivity of various organs to insulin 
is associated with diabetes, cardiovascular disease, 
hypertension and obesity. Because many present and 

future therapies are aimed at improving insulin sensitivity, 
it is important to have a clinical measure of insulin 
sensitivity to assess therapeutic efficacy. However, the 
‘gold standard’ for measuring insulin sensitivity, the 
euglycaemic hyperinsulinaemic clamp, is labor-intensive, 
time-consuming and expensive24,25, making it 
inappropriate for use in large-scale clinical trials. 

Bergman et al. developed an alternative clinical measure 
of insulin sensitivity using a biosimulation of the plasma 
glucose response to an intravenous bolus infusion of 
glucose26, 27. Their ‘minimal-model’ consisted of a pair of 
nonlinear ordinary differential equations describing the 
plasma glucose kinetics and the kinetics of insulin in an 
interstitial fluid compartment. By using the measured 
plasma insulin profile as a forcing function, Bergman et al. 
determined a unique set of model parameters for each 
patient, such that the simulated plasma glucose response 
best matched the measured glucose data. The insulin 
sensitivity index for each patient was then determined as a 
simple function of the optimal parameters. 

The minimal-model insulin sensitivity index was found to 
be repeatable and in good agreement with the index 
obtained using the euglycaemic hyperinsulinaemic clamp 
28-30. Because the minimal-model analysis is straight 
forward and economical31, it has been widely used to 
assess insulin sensitivity in large-scale clinical trials32. The 
minimal model methodology continues to be improved 
and extended to provide novel clinical measures of 
glucose and insulin dynamics.33-35 

2. Large-scale biosimulations: 

Large-scale biosimulations are designed to 
comprehensively represent physiologic mechanisms 
responsible for health and disease. It typically integrate a 
wide variety of data and can provide insights into how 
complex biological systems are regulated in both health 
and disease. Such models are designed to address a wide 
variety of problems, predict overall system behavior and 
help design experiments and interpret their results. These 
models are generally relatively large, consisting of tens to 
hundreds of equations and parameters. Some of the 
example large-scale biosimulations are listed below: 

Case 1: Asthma biosimulation 

Asthma is a chronic inflammatory disease of the lower 
airways. To better understand asthma pathophysiology in 
the context of the complex interactions between airway 
tissues and the allergen induced immune response, Stokes 
et al. created an asthma biosimulation that encompasses 
airway physiology and the inflammatory effectors system 
36. This model accurately simulated the acute and chronic 
characteristics of asthma, including both early- and late-
phase airway obstruction following allergen challenge, 
airway hyper-responsiveness and chronic eosinophilic 
inflammation. The asthma biosimulation also exhibited 
characteristic responses to known therapeutics. To 
evaluate the predictive capability of the asthma 
biosimulation at the clinical level, Stokes et al. 
investigated the ability of a leukotriene receptor antagonist 
and a long-acting β2-agonist to reduce the severity of 
exercise-induced asthma (EIA)37. The biosimulation 
accurately predicted the efficacy of each therapy when 
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subsequently compared with clinical data from Merck and 
Co., Inc (Whitehouse Station, NJ, USA). Both the 
biosimulation and the clinical results showed greater 
protection in EIA with the leukotriene receptor antagonist 
than with the long-acting β2-agonist. In addition, 
administration of a short acting β2-agonist, an acute rescue 
therapy for EIA, was more effective in combination with 
the leukotriene receptor antagonist than when combined 
with the long-acting β2-agonist. The biosimulation was 
further used to elucidate the mechanisms underlying these 
clinical observations. Perhaps the most compelling result 
of the asthma biosimulation was the prediction that a 
therapeutic in clinical trials, an interleukin-5 (IL-5) 
antagonist, would not be effective for treating acute airway 
obstruction in asthma38. IL-5 increases eosinophil number 
in the airways – a hallmark characteristic of asthma. Based 
on animal studies, anti-IL-5 therapy should decrease 
airway eosinophil number and thereby reduce airway 
obstruction39-41. Surprisingly, although anti-IL-5 
effectively reduced eosinophil number, the asthma 
biosimulation predicted that this therapy would have little 
effect on improving airflow obstruction. This prediction 
was confirmed by the results from an anti-IL-5 clinical 
trial42. The biosimulation further showed that ongoing 
airway obstruction was because of the continued presence 
of other resident and infiltrating cells in the airway, 
highlighting the significant redundancy in the system. 

Case 2: Cardiac electrophysiology biosimulation 

Detailed, quantitative biosimulations of cardiac cell 
electrophysiology have been used to better understand the 
pathophysiology of heart disease43. For example, Winslow 
et al. investigated whether the observed altered gene 
expression of ion channels, pumps and exchangers could 
account for the known electrophysiological properties of 
congestive heart failure44. Beginning with a detailed 
biosimulation of a normal canine ventricular cell, the 
authors adjusted model parameters to simulate altered 
protein levels based on observed gene expression from 
failing ventricular cells. They found that simulations of the 
diseased action potentials and calcium dynamics 
accurately matched experimental measurements. With this 
model, Winslow et al. determined the relative contribution 
of each of the altered protein levels to the observed 
cellular electrophysiological behavior. Although these 
results gave insight into the cellular defects associated 
with heart failure, it is necessary to understand how spatial 
propagation of the cardiac action potential is altered to 
predict clinical outcome. By incorporating the cellular 
electrophysiology biosimulation into a realistic, three-
dimensional model of the canine ventricle, Kohl et al. 
were able to predict disrupted spatial propagation of 
cardiac action potentials in heart failure45. They showed 
that the altered protein levels caused the electrical 
activation pattern to change from a normal, coordinated 
pattern to a dangerous, abnormal pattern of irregular 
circulating waves of electrical activity. To predict how 
pharmacological modulation of cellular electrophysiology 
affects clinical outcome, the authors simulated the effect 
of adding an ATP-sensitive potassium channel opener and 
showed that such an intervention returns the heart to a 
more normal activation pattern. These cardiac 
biosimulations have led to a better electrophysiological 

understanding of the clinical manifestations of heart 
failure and have predicted potentially effective targets for 
therapeutic development. 

BIOSIMULATION OBJECTIVES 

The objective of biosimulation is to provide: 
 Better insights into the behaviour of biological 

systems like the human body and the progression of 
diseases 

 Better predictions of the function and effects of new 
medicine 

 Better ways of conducting science by offering a 
versatile alternative to human and animal 
experimentation  

BIOSIMULATION CHALLENGES 

Industry: 
The industry has relatively few qualified experts in the 
field, and acquisition of the necessary expertise is impeded 
by the unusual combination of insights required. The 
complexity of biological systems combined with the 
traditional lack of mathematics in the life sciences and 
insufficient understanding of biological process from the 
part of engineers and computer scientist represent serious 
obstacles to the application of simulation models in the 
pharmaceutical industry.  

Academic: 
To make biosimulation work, integrating knowledge 
across disciplines is essential. Many academic institutions 
in Europe already dispose of a significant expertise in 
biomedical modeling, and several groups are individually 
at the research front in their specific areas. However, the 
efforts are strongly fragmented both because of the 
enormous diversity of the field and because of the absence 
of a common purpose and an organizing structure. The 
European tradition for collaboration between academic 
institutions and the pharmaceutical industry is also 
relatively weak.  

Regulatory Authorities: 

In the U.S., the simulation approach is already strongly 
recommended by the American Food and Drug 
Administration (FDA).  

To make biosimulation a success it is necessary to:     

 Encourage collaboration and communication among 
those in various academic disciplines ranging from 
the life sciences to physics and mathematics  

 Invest in training and education programmes in 
biosimulation thereby providing an adequate cohort 
of professional staff with the necessary expertise in 
modeling of biological systems  

 Foster stronger links between industry, academia, 
and regulatory authorities46 

 APPLICATION OF BIOSIMULATION 

Clinically relevant biosimulation models enable a broad 
set of application throughout the pharmaceuticals pipeline. 
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Figure 2: Application of biosimulation technology in pharmaceutical R&D 

 
 
ADVANTAGES OF BIOSIMULATION 

Biosimulation is becoming increasingly important for drug 
development47. Since on average only 11 % of all drug 
candidates are approved48, it is anticipated that 
biosimulation may be the tool to predict whether a 
candidate drug will fail in the development process e.g. in 
clinical trials due to adverse side effects, bad 
pharmacokinetics or even toxicity. The early prediction if 
a drug will fail in animals or humans would be a key to 
reduce both drug development costs and the amount of 
required animal experiments and clinical trials. The latter 
is also in line with the so called "3Rs" which refer to the 
principle of reduction and replacement of animal 
experiments as well as to the refinement of the 
methodology in cases where animal tests are still 
necessary49. 

 The reduction, refinement and replacement of animal 
experimentation.  

 The reduction, refinement and replacement of human 
experimentation. 

 More ethically acceptable drug evaluation in 
particular at risk patient groups, such as children, 
pregnant women, and those with specific gene 
modifications. 

 Contributing to the development of safer and more 
effective medicines better adapted to patients needs. 

 Improving today’s knowledge about how patients 
need to administer medicine.  

CURRENT SCENARIO OF BIOSIMULATION  

There are several companies that proved themselves as 
professionals in simulation of biological systems and 
processes, such as Entelos, Gene Network Sciences 
(GNS), and Roseta Biosoftware. Some companies in this 
field, such as Spotfire, Simulations Plus, Select 

Biosciences and Lion Bioscience are more specialized in 
creating three-dimensional images from the results of the 
simulation. These companies have already conducted a 
number of successful projects in biosimulation, showing 
remarkable results. 

Entelos, mentioned earlier, created a technology based on 
the mathematical model of the human metabolism, which 
simulates carbohydrate, lipid and amino-acid metabolism, 
and models the actions of the gut, the absorption of 
intestinal nutrients, insulin release, and nutrient cycles in 
muscle, connective tissue, liver and other tissues. They 
developed 125 unique virtual patients and ran a simulation 
to evaluate an experimental approach to asthma treatment 
for Pfizer. The results obtained from this simulation 
revealed the physiological processes and drug targets on 
which the company had to concentrate. It would have cost 
Pfizer several years and millions of dollars to get this 
answer using its standard techniques . 

Entelos is also known for its simulation that helped 
Johnson & Johnson Pharmaceutical Research & 
Development (J&JPRD) to reduce the total number of 
recruited patients by 60% and to shorten the trial's duration 
by 40%. This was achieved by running a simulation on the 
virtual patients, determining the safety limits for a new 
treatment for type-2 diabetes, eliminating four-fifths of the 
trial.  

Another company GNS, which is based in Ithaca, New 
York, serves such pharmaceutical companies as Novartis, 
Merck and Johnson & Johnson and combines the bottom-
up simulation of physiological processes with a top-down 
"inference modeling" approach based on the analysis of 
clinical-trial data. They use machine-learning and data-
mining techniques, which process enormous amount of 
data in order to reveal certain patterns, and it enables both 
to confirm known behaviors of biological systems, and to 
predict other, unknown behaviors.  
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Designing clinical trials could also benefit from the 
computational modeling and biosimulation. This was 
proved by Pharsight when they delivered the “computer-
assisted trial design” system models to the market, which 
allowed simulating clinical trials and determining the 
optimal number of patients, dose amounts, and dosing 
frequency. Traditionally these data was obtained through 
time-consuming and costly trial and error. Pfizer and IBM 
Life Sciences are among clients of Pharsight.  

In a future scenario biosimulation would change the way 
substances are tested, in which in vivo and in vitro tests 
are substituted by tests in silico49. 

CONCLUSION 

Biosimulation have emerged as an efficient means in the 
pathway of drug discovery & development which reduces 
the time, money and complexity of traditional system. The 
introduction of biosimulation can have a significant impact 
on prediction the response of drug therapy to human 
system in the early stage of drug development process that 
remain a major pharmaceutical bottleneck. Interest in 
adopting biological simulation and modeling in the 
pharmaceutical industry is high, but concerns remain over 
how soon the technology will pay off. 
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